光伏科技发展评述与未来展望

沈辉

广州 2019.01.14

顺德中山大学太阳能研究院 SYSU Solar ShunDe SYSU Institute for Solar Energy

主要内容

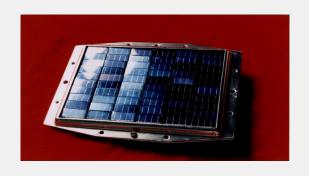
- 光伏理论建立与发展
- 太阳电池技术与产业发展
- 光伏组件技术与产业发展
 - 光伏发电未来展望

光伏理论建立与发展

- 1800 A. Volta (Voltaic pile)
- 1839 A. E. Becquerel (Photovoltaic effect?) A. E. Becquerel Prize
- 1905 A. Einstein (Lichtquant-photon, $h v = \frac{1}{2} m v_m^2 + A$)
- - A. Einstein, 1921 Nobel Prize in physics
- 1948 J. Bardeen, W. H. Brattain (Transistor)
- 1949 W. Shockley (Theory of p-n Junctions)
- - W. Shockley, J. Bardeen, W. H. Brattain, 1956 Nobel Prize in physics
- 1954 Daryl M. Chapin, Calvin S. Fuller, Gerald L. Pearson (c-Si solar cells)
- 1955 W. B. Cherry (PV systems for space satellites) W. B. Cherry Award
- 1961 W. Shockley and H. J. Queisser (Limit of Efficiency)
- 1974 P. F. Varadi (Solarex c-Si solar cells for terrestial applications)
- 1981 **A. Goetzberger**, the founder of FhG-ISE
- 1980's M. Green, (High efficiency c-Si solar cells)
- 1990's Grätzel, (DSSC: Dye-sensitized nano-crystalline solar cell)
- 2006 Tsutomu Miyasaka, (Perovskite, 0.4%-2 %)

光伏理论建立与发展

- 电话机供电需求,单晶硅太阳电池研制 1954
- 卫星供电(苏联57、美国58、法国60、日本70、中国70、84) 1957
- 第一次石油危机,1978第二次 1973
- 第一家地面用太阳电池企业 Solarex 在美国成立 1974
- 1980 非晶硅、多晶硅电池
- 气候大会,《京都协议书》 1997
- 多晶硅电池产量超过单晶硅 2007
- 20世纪 爱迪生时代: 电转光与电气化, 大量消耗化石燃料
- 21世纪 新能源时代: 光转电成为发展主旋律, 直接利用太阳能



中国科学院半导体研究所廖显伯研究院提供资料

中国卫星电池研究

"实践一号"卫星

1971年3月3日长征一号运载火箭发射了中国第二颗人造地球卫星,即"实践一号"。这是中国"实践"系列科学探测与技术试验卫星中的第一颗。

卫星星体是直径1米的近球形72面体,上下半球梯形平面上各安装了14块硅太阳电池板,共计28块电池板。

中国科学院半导体研究所廖显伯研究院提供资料

"实践一号"卫星采用硅太阳电池供电,进行了多种空间物理环境参数 测量,还进行了硅太阳电池供电系统等试验。

"实践一号"卫星在太空正常运行了8年多,远超过原定1年的设计寿命 . 为中国设计和制造长寿命卫星提供了宝贵经验。这在20世纪60年代国外研 制的卫星中也是不多见的。

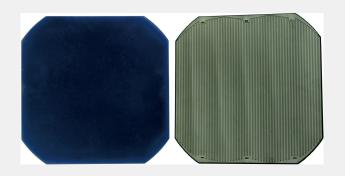
早在1965年前后,有关研制单位就对卫星采用的一些关键技术和部件, 开展了预研工作。并先后解决了电源系统中太阳电池片和镉镍蓄电池的可靠 组合等一系列技术问题。中国科学院半导体研究所就是早期开展预研工作的 单位之一。

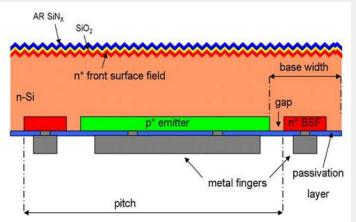
太阳电池技术与产业发展

- 高效晶体硅太阳电池技术:
- 美国Sunpower 公司的背电极(IBC: Interdigitated Back Contact)电池
- 日本三洋公司的HIT(Heterojunction with Intrinsic Thin-layer)电池
- 澳大利亚新南威尔士大学光伏研究中心

PERC (Passivated emitter and rear cell), PERL (Passivated emitter, rear locally diffused) , PERT (Passivated emitter, rear totally diffused) 电池

- BP公司的刻槽埋栅 (Buried contact) 电池
- 德国ISFH的OECO电池、COSIMA背接触电池、RISE-EWT 电池等
- 德国Fraunhofer-ISE的LFC、TOPCon 电池


硅片	电池结构	面积 (cm²)	效率 (%)	研发机构
n型单晶硅	IBC (Interdigitated Back Contact)	79	26.7	Kaneka
p型单晶硅	POLO (Polysilicon on Oxide) junction	4	26.1	ISFH
n型多晶硅	TOPCon (Tunnel Oxide Passivated Contact)	4	22.3	Fraunhofer ISE
p型多晶硅	PERC (Passivated Emitter Rear Cell)	245.83	22.04	Jinko Solar

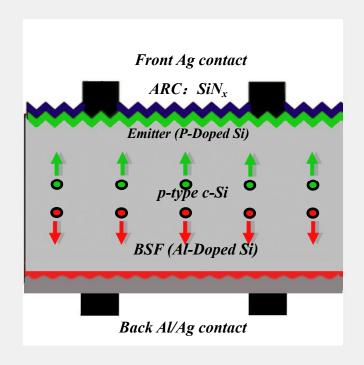


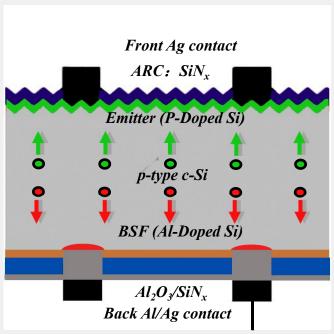
IBC 电池结构与特点

IBC电池正面与背面

名称 16年8年 14 0484/4714

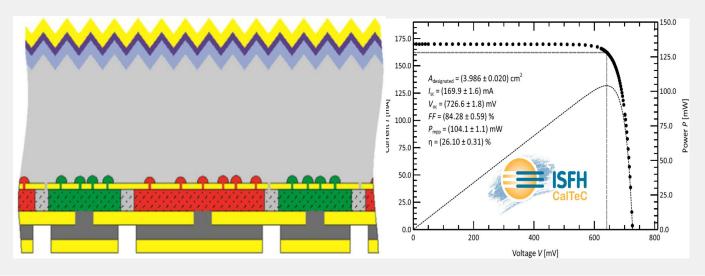
常规单晶硅电池正面与背面


- IBC太阳电池具有较低的电压-温度系数;
- 优越的弱光工作性能;
- 对整个太阳光谱上的光线的高灵敏度
- 这种电池不但效率高, 而且温度系数较低 ,只有- 0.38%/℃,所以这种电池很适合 于在聚光下使用。



AI-BSF电池与PERC 电池对比

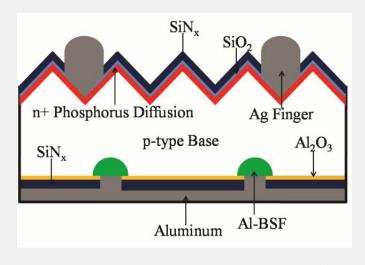
PERC电池比常规结构主要区别:背面采用叠层电介质钝化层。


注: 电介质钝化层不局限于Al₂O₃/SiNx结构。

ISFH: p-Mono Si

Voc(mV)	Jsc(mA/cm ²)	FF (%)	Rs(Ω·cm²)	Rsh(kΩ·cm²)	Eff(%)
726.6 ± 1.8	42.62 ± 0.4	84.28 ± 0.59	0.1	700	26.10 ± 0.31

基于p型硅片的最高效率为26.1%,UNSW 制备的p-PERL电池效率为25%,这说明 PERC电池还有很大提升空间; PERC电池进一步效率的提升需要基于各种优化工艺的 叠加。



Jinko Solar p-Poly-Si

Voc (mV)	Jsc (mA/cm ²)	FF (%)	Eta (%)
671.7	40.5	80.93	22.04

P型多晶硅PERC太阳电池的结构

- (1) 采用RCA清洗和热氧钝化;
- (2) 利用反应离子刻蚀RIE(Reactive Ion Etching)技术;
- (3) 背面PERC结构, Al₂O₃ / SiN_x叠层膜 作为背面钝化层;
- (4) 金属电极采用丝网印刷;
- (5) 电池的氢钝化技术

Jin J, Shen H, Zheng P, et al. > 20.5% Diamond Wire Sawn Multicrystalline Silicon Solar Cells With Maskless Inverted Pyramid Like Texturing. IEEE Journal of Photovoltaics, 2017, 7(5):1264-1269.

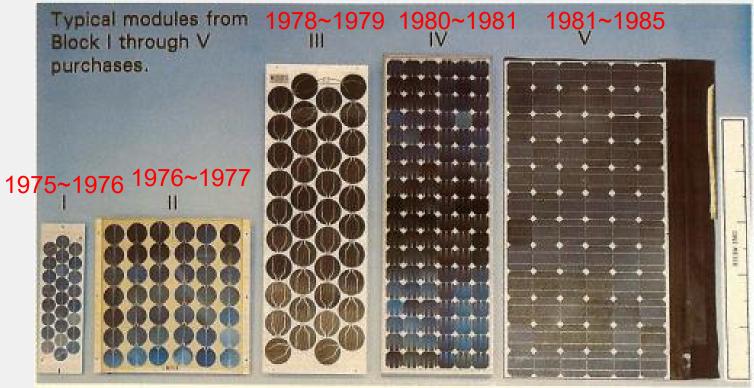
- 12 -

太阳电池发展的经验教训

- 认识误区:晶体硅高耗能、高污染
- 薄膜硅、带硅技术相继失败,美国1366?
- 第三代光伏概念?
- 太阳电池基本特点: 半导体、p-n 结、欧姆接触这三点没有改变!
- 染料敏化太阳电池: 发源地 瑞士 EPFL
- 硅薄膜太阳电池:中国曾经是一个大试验场
- 杜邦生产太阳电池的一次尝试: 硅薄膜电池
- 染料敏化、非晶硅电池的文章最多,但产品没有取得成功?!

新型硅基异质结太阳电池

- 基本思路
- 硅片是基本材料, 材料稳定, 资源丰富, 技术、市场成熟
- 没有高温过程、节能、对硅片损伤小
- 没有扩散过程,不用危险气体、物品
- PVD 工艺、安全、环保、量产
- 其它材料
- 硫化物 (Sulfide: CdS, ZnS, In₂S₃) p-Si
- 氧化物(Oxide: CrO_x, WO_x, MoO_x) n-Si
- 金属/氧化物/金属 —— 空穴选择性接触
- MgF、/Mg/Al —— 电子选择性接触等多层膜结构


光伏组件技术与产业发展

晶体硅电池与组件技术特征

(From Flat-Plate Solar Array Projet of the U.S. Department of Energy's National Photovoltaics Program)

SENSOR TECH SOLAREX **SOLAR POWER SPECTROLAB**

ARCO SOLAR **MOTOROLA** SENSOR TECH SOLAREX **SOLAR POWER** ARCO SOLAR **ASEC** G.E. **MOTOROLA PHOTOWATT** SOLAREX **SPIRE**

ARCO SOLAR G.E. **MSEC SOLAREX SPIRE**

太阳电池组件质保发展历程

时间	1982	1985	1990s	1997	2014
生产商	ARCO Solar	Kyocera	BP Solar	Siemens Solar	BYD
质保期	5年	10年	20年	25年	40年

太阳电池组件生产商并购历史?

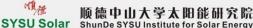
Solarex(1974) - BP Solar(1981-2011) - ?

ARCO Solar (1977)

-Siemens Solar (1990-01)

-Shell Solar (2002-06) - Solar World

Solarex旧组件再利用


Aus den bisherigen Betriebserfarungen mit Solarstromanlagen liegen heute keine gesicherten Erkenntnisse über die langfristige Zuverlässigkeit der Modultechnologie vor.

Die Wahrheit ist: Niemand weiss, wie lange ein Solarmodul wirklich lebt.

Was bedeuten denn 1000 Stunden in der Schreckenskammer des Feuchte - Hitze -Tests (Damp - Heat -Test) bei 85 Grad Celsius und 85 Prozent Luftfeutigkeit?

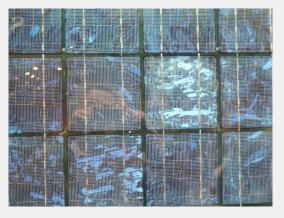
德国,太阳电池组件可作为遮阳挡 部件, 14.2 kW

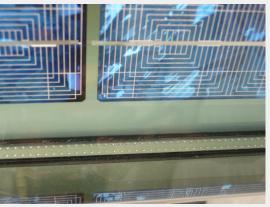


德国,光伏幕墙10 kW

荷兰,装饰性光伏屋顶

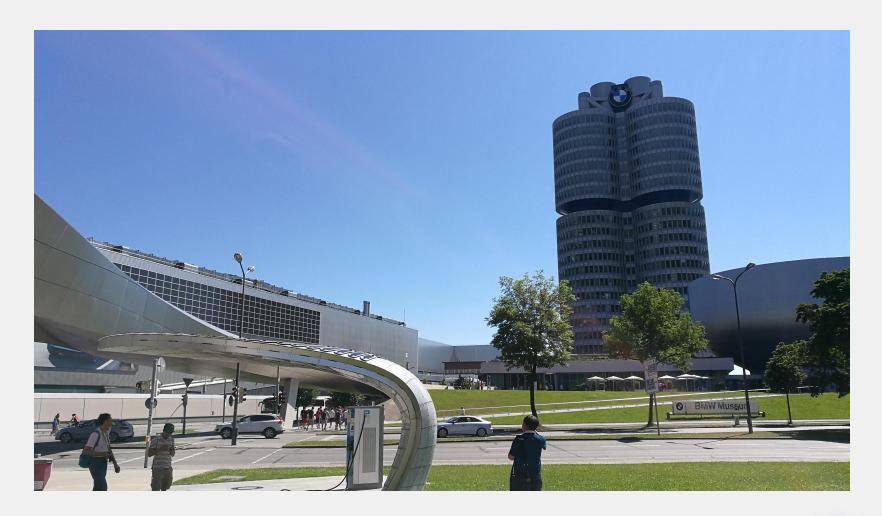
德国太阳电池与太阳电池组件工厂, Gelsenkirchen





德国科隆步行街一家商店的光伏幕墙, 12 kW, 中空玻璃结构

2015年, 德国斯图加特附近购物中心



2016年,德国慕尼黑宝马总部

2016年,德国慕尼黑宝马总部

晶体硅电池组件技术发展

双玻璃(双面电池)、半片(减少电损耗)、叠片(增大功率密度) 光伏建筑构件、光伏建筑集成

交通工具: 汽车、船、无人机等需要光伏组件配套发展

60 片电池片的组件功率	2016 年	2017 年	2018年	2020 年	2022 年	2025 年
PERT N型单晶组件功率 (W)	290	295	300	315	325	330
BSF P型单晶组件功率 (W)	280	285	290	295	300	305
BSF P型多晶组件功率 (W)	265	270	275	280	285	290
PERC P型单晶组件功率 (W)	290	295	300	305	315	325
PERC P型多晶组件功率 (W)	270	275	280	285	290	295
黑硅多晶组件功率 (W)	270	275	280	285	285	290
PERC+黑硅多晶组件功率 (W)	275	280	285	290	295	300
异质结 N 型单晶组件功率 (W)	305	315	320	335	345	360
背接触 N 型单晶组件功率 (W)	320	335	340	345	350	360

(中国光伏行业协会)

光伏发电未来展望



贝尔实验室科学家发展太阳电池的初衷是为了解决电话供电需求, 但没有想到,太阳电池在人造卫星上得到最好的应用!

表面安装了太阳电池的人造卫星

使用太阳电池组件的人造卫星

光伏技术未来展望

- 高效晶体硅电池产业化发展(产业升级)
- 多主栅线(4-15), 无主栅
- PERC, HIT (SHJ,) IBC, BJBC
- 高效、高可靠性光伏组件 (产业升级)
- 双玻双面发电光伏组件
- 半片电池组件
- 叠片组件
- 哪种技术将成为主流?
- 以硅片为基片的太阳电池仍有很大发展空间(异质结、叠层等)
- 新材料: 钙钛矿电池? (Tsutomu Miyasaka, Nam-Gyu Park, Henry Snaith)

光伏技术未来展望

- 我国光伏产业与应用推广将继续引领世界发展
- 与光伏配套的储能技术有待突破
- 光伏╋
- 光伏 + 家电 (格力光伏空调)
- 光伏 + 渔业 (通威集团)
- 光伏 + 能源互联网 (天合光能、远景)
- 光伏 + 建筑 (兴业、蓝波)
- 光伏 + 农业 (中利腾晖)
- 光伏 + 精准扶贫
- 光伏发电作为未来重要能源之一已经得到共识(何时实现 5%, 10%?)

我国光伏产业突飞猛进四部曲

- 晶体硅太阳电池、组件(2003-2007) 尚德、天合、英利、晶科、阿特斯、林洋等,背景:光伏灯具等应用产品,我国西部市场,德国及后来整个欧洲市场,主要采用德国设备。引导太阳电池国内发展潮流,同时带动超白玻璃、银、铝浆料、EVA、背板等相关产业
- 单、多晶硅片(2006-2009) 赛维LDK、晶龙、隆基、中环、锦州阳光等发展 晶体硅电池的上游产品,即单晶硅片、多晶硅片。
- 高纯多晶硅材料(2007-2011) 保利协鑫、特变电工、通威永祥、重庆大全、宜昌南玻等,晶体硅光伏产业链最基础、最艰难的一环,失败企业众多(与非晶硅电池相似)。
- 光伏电站建设 (2009 2017) 合肥阳光、华为等逆变器企业发展强劲, 从中广核的敦煌10 MW 电站开局,众多央企与民企投入此中,我国领跑光伏电站 建设速度与规模。
 - 新型太阳电池、新型光伏技术?

谢 谢!

顺德中山大学太阳能研究院 SYSU Solar ShunDe SYSU Institute for Solar Energy

